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Variational Modeling
Basic Techniques




Calculus of Variation

Basic Idea:

= Consider functions
[:S->D

= Define an "energy functional”
E:(S->D)->R
= Functionals map functions (- - -) to numbers (R)

= [nterpretation: “score”
= Usually: "energy”
= |.e., the smaller the better



Calculus of Variation

Building energy functionals

= Encode requirements (“‘constraints”) on f: S - D
= Soft constraints — violation increases energy.
= Hard constraints — violation not allowed
~ Excluded from S.

Solution by optimization
= Compute the function(s) f that minimize E.



Calculus of Variation

E large E small

UHVM

General framework
= Model problems by “wishlists”

constraints

Example 1
= We are looking for a curve.
= |t should be as smooth as possible.
= Hard constraint: pass through a number of points



Calculus of Variation

Another example

= Problem
= We want to go to the moon.
= Given
= Orbits of moons, planets and star(s).
= Flight conditions (atmosphere, gravitation of stellar bodies)

= Unknowns
= Throttle from rocket motors (vector function x(t): R — R?)

= Energy function
= Usage of rocket fuel (the fewer the better)
= Perhaps: Overall travel time (maybe not longer than a week)



Calculus of Variation

To the moon

= Constraints
= Start in Cape Canaveral (upright).
End up on the moon.
Do not hit moons or planets on the way.
Land on the moon at < 20 km/h relative speed.

Rocket motor has a limited range of forces
— Minimum and maximum power
— Angle limitations
— No backward thrust

= Flying to the moon = minimizing a functional
= Very, very slightly simplified...



A Simple Example

Simple example: variational splines

= We want smooth curves
= Small curvature
= Approximated by small second derivatives
— (Correct curvature is nonlinear)
= Quadratic energy



A Simple Example

Simple example: variational splines

= Soft constraints

= Parameter values t4, ..., t,, at which we
should approximate points pq, ..., px:

t=t,

az 1 X
= | lﬁﬂt)] dt+A;<f<ti> - p)?

t=t1

= A controls smoothness



A Simple Example

Extension

= Error quadrics
= Specifty the accuracy by error quadrics Qq, ..., Q,;:

t=t,

2 2 n
5 = | ﬁf@] dt+azl<f<ti>—pi>2

t=t1

t=t,
5 = | [ f(t)] dt+lz(f(t) POTQ(F () — p)



Rank-Deficient Quadrics

_ i tt' | (linearift
Q= Ilt||2| s fixed a priori)

] \

Error quadric example:

= Permit tangential movement
= Up to first order
= Parameter values might be inaccurate

= Rank-(d — 1) matrix constraints
= Point-to-normal constraints



Numerical Treatment

Numerical computation
= No closed form solution

= Numerical solution
= Discretize (finite dimensional function space)
= Solve for coefficients (coordinate vectors in function space)



FD solution:

= Represent curve as array of k values:

Finite Differences

t
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= Unknowns are the curve points y,, ..., Y

Y1

Y2

Yk




Discretized Energy Function

Discretized Energy Function

= Energy: squared linear expression
= Quadratic objective function

= Solution by linear system

dt*

t=ty

B(H-= | {d—f(t)} de + Y (6(¢,)-p,) @, (C¢)-p)

2 n
s ( £)= i|:Yil —2Y, +Yiq } n Z(Yindex(t,-) - p, )T Q. (y,-,,dex(tl.) - pi)
: i-1

(neglected here: handling boundary values)



Summary

Summary
= Variational approaches look like this:

Optimization: compute arg min E (f)
Objective: E(f) — E(data) (f) + E(I‘egularizer) (f)

Hard constraints: f € F := {f|f satisfies hard constraints}

= Connection to statistics
= Bayesian maximum a posteriori estimation
- E(d31) s the data likelihood (log space)
. p(regularizer) g g prior distribution (log space)



Variational Toolbox

Data Fitting, Regularizer Functionals,
Discretizations




Toolbox

In the following:

= We will discuss...
=« ...useful standard functionals.
= ...how to model soft constraints.
= ...how to model hard constraints.
= ...how to discretize the model.

= Click & snap your custom variational model
= (Click & snap: add together to a composite energy)



-unctionals




Functionals

Standard Functional #1: Function norm

= Given a function
[:O->R",QOcR™

= Minimize
B = IR = [ FooPax
Objective
= Function values should not become too large

= Often useful to avoid numerical problems

- Positive quadratic energy, then add 1E (#¢70)
= smallest eigenvalue bounded by /1

= System always solvable



llustration

A A
f ) minimize [, f(x)*dx
N
Q x Q
A
optimum
>




Functionals

Standard Functional #2: Harmonic energy

= Given a function
[:O->R",QOcR™
= Minimize;

B = I7FIR = | (7FG0)"dx

= Minimize differences to neighboring points
= Appears frequently in physics & engineering



lllustration: 1St Derivatives

/bad minimize [, f'(x)*dx
A (x) . A =
/ good <
| - >
Q) X Q)

optimum




Harmonic Energy

Example: Heat equation
= Metal plate

= Hard constraints:
= Heat source
= Heat sink

= Final heat distribution?
= Heat flow tends to equalize temperature.
— Stronger heat flow for larger temperature gradients.
= Gradients become as small as possible.

heat sink heat source



Harmonic Energy

Geometric Effect

= Curves that minimize the harmonic energy
= Shortest path, a.k.a. polygons

TN

= Two-dimensional parametric surface

>




Surface Example

Surface fitting with Laplacian Regularizer
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initialization

Data attraction: point-to-plane, Gaussian window
Regularizer: minimize triangle edge length



Functionals

Standard Functional #3: Thin plate spline energy

= Given a function

[:O->R",QOcR™

= Minimize:

l=1]=1

= Minimize integral second

62

0,0y

fx)

derivatives (approx. curvature)

= Yields smooth, low curvature curves & surfaces
= Exact curvature based energy is non-quadratic

— Rare In practice



Illustration: 2"9 Derivatives

minimize [ f"'(x)?dx

A FOO A .
/yr """" bad \\—_l \///_,——7\'\\
P good ) / ( \
y R |
Q X 0
A
optimum
] >
Q



Energies for Vector Fields

Vector fields:
= Now consider volume deformations: R —» R"

= Object moving over time:
= f(x) describes its deformation.
= f(x,t) describes its motion over time.

[:R" - R"

e




Functionals

Standard Functional #4: Green’s deformation tensor

= Gjiven a function Remark: Frobenius Norm
2
fosmLock ()
F
= Minimize = a2+ b?+ 2 + d?

5 = | |[iwreormvreor—1]| " ax

= Physically-based deformation modeling

= Minimize "metric distortion”

« Jacobian Vf is orthogonal & Vf-Vfl =1
= |[nvariant under rigid transformations.

= Bending, scaling, shearing is penalized.
= Energy is non-quadratic (4-th order).



Green Tensor / Solid Dynamics

Model
= Object ) c R% (d = 2,3)
Deformation field f: (0 X R - R",
f(x,t) = new position of point x at time ¢

Green Tensor
= (Also) used for modeling deformable solids
= Physically-based deformation modeling
= PDE as Equation of motion



llustration

A A & 4 non-rigid
s | | / distortion
‘ Y
(9) ://\ >
> >
N optimum
>




Deformation Gradients

deformation
gradients

Tyf _
(Vf Vi I) comparison to
orthogonal gradients



Functionals

Standard Functional #5: Volume preservation
= Given a function
f:0-R",0cR”
= Minimize
E(f) = J [det(7f () — 1]2dx
Q)

= Objective
= Minimize local volume changes
= Preserve the volume at every point
= Incompressible materials (for example fluids)
= Invariant under rigid transformations
= Non-quadratic (6th-order in 3D)



llustration

Determinant = area / volume

. volume larger

than T

< 4 .voume T
deformation

gradients

also
volume T



Functionals

Standard Functional #6: Infinitesimal volume preservation

= Velocity

d
v: (- R" 0 c R" v(x) =Ef(x,t)

= Minimize
E(w) =

J

f [div v(x, t)]%dx

Q
2

| o 0
—v(x,t)+ -+ —v,(x,t)| dx

—

0 axl axn

= Minimizes local volume changes in a velocity field

= |[nstantaneous motions
= Linear, but works only for small time steps
= Large (rotational) displacements are not covered



Functionals

Standard Functionals #7 & #8: Velocity & acceleration

= Function
[ OXT->R"Y,
QOcRY,T=]t,t.]c R
= Minimize:

2
E(f) = fjﬂﬂ( f(x, t)) dxdt E(f) = ﬂQxT<d > f(x, t)) dxdt

= Objective: minimize velocity / acceleration
= Air resistance, inertia.



lllustration: 1St Derivatives

. . . ’ 2
\ /bad Am|n|m|ze Jo f'(x)?dx
f(x) =
~ good <
—_ - > >
Q X Q
A
optimum




Illustration: 2"9 Derivatives

optimum

minimize [, f"(x)?dx
)~

d? ’
XT



How does the deformation look like?

as-rigid-as
possible
volume

/
\

plate
splines

original




Soft Constraints



Soft Constraints

Penalty functions
= Uniform
= General quadrics
= Differential constraints

Types of soft constraints
= Point-wise constraints
= | ine / area constraints

Constraint functions
= | east-squares
= M-estimators



Uniform Soft Constraints

Uniform, point-wise soft constraints:

= Given a function
f:0-R",0cR™

= Minimize: E“™")(f)= iq,- (Fx)-y, )
i=1

constraint weights (certainty)

prescribed values (xy);



Uniform Soft Constraints

General quadratic, point-wise soft constraints:

= Given a function
f:0-R",0cR™
= Minimize;

E(Conm)(f) = Zn:(f(xi )Y, )T Q (f(xi )=y, )

constraint weights (general quadratic form, non-negative)

prescribed values (x,y);



Uniform Soft Constraints

Differential constraints:
= Given a function f: 0 - R", (0 c R™
= Minimize;

E=(6)= Y (Df(x) - (0y), ) @, (Df(x,) - (Dy),)

constraint weights (general quadratic form, non-negative)

prescribed values (x,Dy);

0
OX, ..0X.

I11 Iep a1

Differential operator: p= :
0
0X; .OX;

1,m km.m

This are still quadratic constraints (— linear system).



Examples

Examples of differential constraints:
= Prescribe normal orientation of a parametric surface

_a, o t n
f: R? - R3, E(f) = <_av>f(u, V) — n) 4 4
( ; /M/ﬁé

= Prescribe rotation of a deformation field
w A
FiRE SRR, E(F) = IVF () — RIZ 1" @
| | | ) |25
= Prescribe acceleration of a particle > R
X
f:R - R3, f(t) = pos.,f(t) = velocity, "
. t) f(t
B = 7@ - a)|’ o @



Line / Area Soft Constraints

Line and area constraints:
= Given a function f: 0 -» R, (. ¢ R™
= Minimize:
EC(f)= [(F(x)-y(x))" Qx)(f(x) - y(x))

AcQ

quadric error weights (may be position dependent)
prescribed values y(x) (function of position x)

area A — Q on which the constraint is placed (line, area, volume...)

= Ak.a: “transfinite constraints”



Constraint Functions

Typical: quadratic constraints
= E(x) = f(x)?
= Easy to optimize
= Linear system

= Well-defined critical point
= Gradient vanishes

= However: sensitive to outliers



Constraint Functions

Alternatives for bad data
= |,-norm constraints (E(x) = |f (X))
= more robust
= still convey, i.e. can be optimized

= Truncated constraints
= even more robust
= non-convex, might be difficult to optimize



Discretization



Two Approaches

Finite Differences
= Use grid

= Replace differentials by differences
= Replace integrals by sums

= See simple example

Finite Elements
= [ Inear Ansatz




Linear Ansatz

Linear Ansatz
= We use a linear ansatz:

FOO) = F) = ) Aiby(9)
=1

= f lives in a finite dimensional subspace
= Coordinates: 14 ... 1,



<digression>

BasIs

Jesign?



Which Basis Functions?

Example b ()
= Radial basis functions (RBFs)

by (x) = exp (— =5 (x — x0)?)

= Sample surface uniformly with x4, ...

= General domains Q:

= Sample uniformly, too

= Use Euclidean RBFs
restricted to ()




Other bases

Other basis functions

= RBF-like functions with higher consistency order
= Zero order: Partition of unity

= First, second, third,... order:
Polynomial moving least-squares

= Mesh-based FE functions (spline meshes)
= Fourier basis, spherical harmonics, etc.

= Wavelets
= Finite spatial & frequency support



Digression: Meshless MLS-Bases

Moving Least Squares

N B, B, Bj
o pl = (XI .yz) @
@ o ©
o O @ ® @ :
target values basis functions
a(X)
e -
7

= -

weighting functions least squares fit



Digression: Meshless MLS-Bases

Constructing the basis

1 / -
1 1 o4

I 1 /

1 I !

I 1

I I . \

\ \

e :
\\ :
\

LA “x--.e\'lglha"ce ®
e 0
-0
@
® 0
0
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(=]
o0
o

= Consistency order and smoothness of the MLS-Scheme

= Need to invert matrix to evaluate at each point




</digression>

Back to F




Finite Element Discretization

Derive a discrete equation:
= Just plug in the discrete f.

= Then minimize the it over the A.
= Compute the critical point(s):

E(f(®)->min. = vi=1, k%E () =0

Solve Equations
= Quadratic functionals: linear system.

= Non-linear, smooth functionals:
Newton, Gauss-Newton, L-BFGS, ...



Example

(Abstract) example:

= Minimize square integral of a differential operator D
= Quadratic differential constraints

= Data term: Match points f(x;) =y;
= Soft constraints

= Yields quadratic optimization problem in the
coefficients



Example

(Abstract) example (cont):

B = | (07GO) dx+ 1) () =y
=1

E(fi) = jﬂ (Dzk:/libi(x)> dx + Z (Zﬂ bj(x;) — YL)
i=1 l 1 \j=1
J.

DataTerm

k
z&llj Db;(x)] [Dbj(x)] dx + 1= DataTerm(2)

j=1

Mw

Il
[

[

-
-

[y

AiAjJDbi(x)Dbj(x) dx + 11 DataTerm(A)
Q

1=1j=1



Example 1
Image Reconstruction




Image Reconstruction Model

Problem statement
= Measured 2D pixel image
= Distorted by noise
= Want to remove noise

Bayesian problem modeling
= Model of measurement process
= Prior distribution on images (this is Bayesian)

Inference: Maximum-a-posteriori



Model

Image
" Xi,j withi =1 W,] =1,..,h

= continuous model: f:[1,w] x [1,h] = R

Probability space
s () = wah
= Probability measure on sigma-algebra on RW*?

= Continuous model “f": mathematically very involved

= We restrict ourselves to finite-dimensional probabilistic
models



Model

Bayes rule
P(X|D) ~ P(D|X)-P(X)
Likelihood
» P(DIX) = [T;L, [Tj=1 P(d;lx;) (1.i.d. noise)
= 12, [Tj=1 Ny, o, (x;) (Gaussian noise)

(xl l)

1 204
=iz Mlm | me ™

(Gaussian distribution)




Model

Likelihood

_(xi- l)
1
* POIX) =% [jer | —5ze 0

Neg-Log-Likelihood

w
E(D|X) = —InP(D|X) = zz(xi—di)2+ il
— —|n
20} ohV 2T

independent of x;

i=1j=1



Model

Prior
= Assumption: Large image gradients are unlikely
= Gaussian distribution on Gradients
; _ Br . L 2
Neg-log-likelihood: - V£l
= Discreet:

<\ xl+1] xi,j)z + (xi,j+1 — xi,j)z wh
E(X) =—-InP(X) = z z 52 + i
i1 =1 Ox Oy 2T

independent of x;



Minimization Problem

Minimize
E(DIX) + E(X)
w—1h-1 2 2
_ z(xl—dz)er (rivay = i) + (rijn — %)
— . -
=1 j=1 ZOD =1 j=1 ZO-X

Equivalent minimization objective

o W= 1h-1
z —d)2+_z Z(XHU xl]) + (141 - xU)
i=1j=1 =1 j=1
Continuous

2
j (F) — d())2x + 2 f V£ l2dx
Q OpJa



Modeling |

Looks familiar?

= This is the same objective as in the modeling |
assignment (sheet 06).

= Solution via linear system

Variant
= Penalize [, norm instead of [, norm of gradients

2
j (F) — d()2dx + = j 17 £l dx
Q OpJa

= Laplace distribution (double exponential)
= Yields sharper images (natural image statistics)



Technical Remark

Image Prior

w—1h-1 2 2

—In P(X) = (xi+1,j_xi,j) +(xi,j+1_xi,j) wh
nP(X) = > t—
i=1 j=1 X OxV&Tl

= This is an “improper prior”
= Does not integrate to one!
= Infinite subspaces without penalty

= Formal fix
« Assume broader prior on function value itself:
f NNO:Uvery large
= For MAP estimation, this does not matter
= We just find a point of maximum density
= Integration not required






